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The identification of meaningful relationships between two or more categorical variables is 

an important, and ongoing, element to the analysis of contingency tables. It involves 

detecting categories that are similar and/or different to other categories. Correspondence 

analysis can be used to detect such relationships by providing a graphical interpretation of 

the association between the variables, and it is especially useful when it is known that this 

association is of a symmetric nature. (Greenacre 1984), (Lebart et al. 1984). 

In this paper, we will explore the Gray-Williams index when used as the measure of 

association in non-symmetrical correspondence analysis (NSCA). It will be shown that, by 

concatenating a predictor variable of a three-way contingency table, the two measures are 

equivalent. The paper will analyse the sum of squares for nominal data partitioning the Sum 

of squares for main effects and the interaction in the sense of analysis of variance giving an 

orthogonal decomposition of  Gray Williams index . 

 

Keywords: Three-way contingency table, The Gray-Williams measure of association, 

Catanova, Main effects Interaction 

1. Introduction 

The identification of meaningful relationships between two or more categorical 

variables is an important, and ongoing, element to the analysis of contingency tables. 

It involves detecting categories that are similar and/or different to other categories. 

Correspondence analysis can be used to detect such relationships by providing a 

graphical interpretation of the association between the variables, and it is especially 

useful when it is known that this association is of a symmetric nature. (Greenacre 

1984), (Lebart et al. 1984). 

There are many real-life applications where it is not appropriate to perform 

classical correspondence analysis because of the obvious asymmetry of the 

association between the variables. In these cases non-symmetrical correspondence 
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analysis can be considered. (D’Ambra-Lauro 1989, 1992), (Gimaret et al. 1998) and 

(Kroonenberg–Lombardo 1999). 

The key difference between the symmetrical and non-symmetrical versions of 

correspondence analysis rests in the measure of association used to quantify the 

relationship between the variables. For a two-way, or multi-way, contingency table, 

the Pearson chi-squared statistic is commonly used when it can be assumed that the 

categorical variables are symmetrically related. However, for a two-way table, it 

may be that one variable can be treated as a predictor variable and the second 

variable can be considered a response variable. For such a variable structure, the 

Pearson chi-squared statistic is not an appropriate measure of association. Instead 

one may consider the Goodman-Kruskal tau index. Where there are more than two 

cross-classified variables, multivariate versions of the Goodman-Kruskal tau index 

can be considered. These include Marcotorchino’s index (Marcotorchino 1985) and 

Gray-Williams’ indices (Gray-Williams 1975), (Anderson-Landis 1980)  

In this paper, we will explore the Gray-Williams index when used as the 

measure of association in non-symmetrical correspondence analysis (NSCA). It will 

be shown that, by concatenating a predictor variable of a three-way contingency 

table, the two measures are equivalent. The paper will analyse the sum of squares for 

nominal data partitioning the Sum of squares for main effects and the interaction in 

the sense of analysis of variance giving an orthogonal decomposition of Gray 

Williams index . 

This paper is divided into six further sections. In Section 2 we consider the 

measure of association for two asymmetric cross-classified categorical variables. In 

Section 3 we provide a description of NSCA where the Goodman-Kruskal tau index 

is used as a measure of asymmetric association. This section also offers two tools 

that can be used to delve deeper into the source of association using this index. One 

is the C-statistic based on the work of Light-Margolin (1971), and the other is 

confidence circles. This latter tool was discussed in some detail for symmetrical, or 

classical, correspondence analysis of nominal variables by Lebart et al. (1984).  

The Gray-Williams measure of complete association and its link to the Goodman 

Kruskal tau index when concatenating a predictor variable is discussed in section 4. 

In section 5 we analyse the interaction between the predictor variables and we 

present an orthogonal decomposition of Gray-Williams “Multiple” τ in which we 

have the part of main effects and the part of interaction. 

A case study we present in the section 6, some final consideration ended the paper.  

2. Measuring Non-SymmetricAssociation 

Suppose we consider the cross classification of n individuals/units according to two 

categorical variables, 1X  and Y, that form a two-way contingency table, N. Let 1X  

be the column variable that consists of c categories, and Y be the row variable 
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consisting of r categories. Denote the (i, j)th cell entry by ijn  for i = 1, 2, . . . , r and 

j = 1, 2, . . . , c, and the (i, j)th joint proportion by nnp ijij /=  so that 1
1 1

=∑∑
= =

r

i

c

j

ijp . 

Define the ith row marginal proportion by ∑
=

• =
c

j

iji pp
1

 and define the jth column 

marginal proportion by ∑
=

• =
r

i

ijj pp
1

.   

The chi-squared statistics commonly used as a means of formally measuring 

the departure from independence between 1X  and Y. By considering this statistic, it 

is assumed that there is a symmetric relationship between the two variables. 

However, there are many situations where the association between two categorical 

variables is not symmetric. 

Suppose there exist an asymmetric association between two categorical 

variables such that 1X  is treated as a predictor variable and Y is the response 

variable. Therefore, a more appropriate measure of their association is to adjust the 

chi-squared statistic and consider instead  

 

( )
∑∑

= = •

••−r
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j j

jiij

p

ppp
n

1 1

2

 (1) 

 

This measure was proposed by Goodman-Kruskal (1954) as a means of 

measuring the proportional reduction in error (PRE) in the prediction of the response 

variable given a predictor variable. Mirkin (2001,) also discussed these measures for 

nominal variables, as did Light-Margolin (1971) in the context of ANOVA for 

contingency tables. Therefore, suppose we let •• −= ijijij ppp /π  be the difference 

between the unconditional prediction of the ith row category, •ip , and the 

conditional prediction of that, given the jth column category, jij pp •/ . Given the jth 

column category, if it does not contribute to the predictability of the ith row 

category, then 0=ijπ . Formal procedures can be adopted to measure the 

predictability of the row response categories given the information in the column 

categories by considering the Goodman - Kruskal (1954) tau index  
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Light-Margolin (1971) also considered such a measure and described it as “the 

proportion of total variation in the response variable which is accounted for by 

knowledge of the grouping [predictor] variable”.  

The numerator of (2), numτ , can be alternatively expressed as (1) divided by the 

sample size n, and is bounded by the interval [0, 1]. When the distribution of each of the 

response (row) categories across each of the columns is identical to the overall marginal 

proportion, such that •• = ijij ppp / , there is no relative increase in predicability of the row 

variable and thus τ  is zero. Note that zero predictability also implies no association (ie 

independence) between the two categorical variables. When 1=τ , there is perfect 

predictability of the response categories (rows) given the predictor categories (columns). 

3. Non-Symmetrical Correspondence Analysis: testing and confidence circles 

The measure of the departure from independence of the (i, j)th cell of the two-way 

contingency table, N, when there is an asymmetric association between two 

categorical variables, can be quantified by the ijπ  that is defined in Section 2. To 

obtain characteristics and low-dimensional summaries of the structure of this 

association, NSCA involves applying a singular value decomposition (SVD) to ijπ  

so that  

   

∑
=

•

•

=−=
M

m

jmmimi

j

ij

ij bap
p

p

1

λπ  (3) 

 

 

where ( ) 1,min −= crM  and mλ  is the mth singular value of ijπ  for 

Mm ,,1K= . The quantities ima  and jmb  are, respectively, the elements of the 

singular vectors ma  and  mb  associated with the ith row and jth column categories 

and have the property  
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By considering the decomposition (3), the numerator of the Goodman-Kruskal tau 

index can be decomposed so that 

 

∑
=

=
M

m

mnum

1

2λτ . 

 

When performing NSCA (Beh-D’Ambra 2010), we can graphically depict the 

association between the row and column categories by plotting along the mth 

dimension of the non-symmetrical correspondence plot the row and column profile 

coordinates 

 

mimim af λ=  and mjmjm bg λ= . 

 

If one considers these coordinates, then it must be kept in mind that they are not 

guaranteed to be centred about the origin of the correspondence plot (a useful 

property underlying the coordinates from classical, symmetrical, correspondence 

analysis). However, with respect to the unit metric and jp•  metric, the row and 

column coordinates are closely related to the numerator of the tau index through  
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Therefore, points lying at a distance from the origin of the plot indicate that these 

categories contribute more to numτ  than those points that lie near the origin. Also, if 

column points lie close to the origin, these categories do not contribute to the 

predictability of the response variable. If predictor (row) points lie close to the 

origin, these categories are not affected by any variation in the predictor variable. 

The Goodman-Kruskal tau index is a good measure for determining the 

predictability of the rows given the columns. However, as Agresti (1990) indicated, 

a low value of τ  does not mean that there is a “low” association between the two 

variables. While τ  is an appropriate measure of the predictability, the statistic 

cannot, in its current form, be used to formally test for association. Instead such tests 

are carried out using the C-statistic of Light-Margolin (1971) 
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Under the hypothesis of zero predictability ( 0:0 =Π ijH ), Light - Margolin (1971) 

showed that the C-statistic is asymptotically chi-squared distributed with 

( )( )11 −− cr  degrees of freedom. These authors introduced this statistic when 

deriving an analysis of variance procedure for contingency tables, commonly 

referred to as CATANOVA (Categorical Analysis of Variance).  

When the variables of a two-way contingency table are considered to be 

symmetrically related, as is in the case for classical correspondence analysis, Lebart 

et al. (1984) presented the idea of confidence circles to identify those categories that 

contribute to the hypothesis of independence and those that do not. These circles are 

similar to the regions that Mardia et al. (1982, p. 346) derived for canonical analysis. 

Ringrose (1992, 1996) also explored the use of these types of circles for 

correspondence analysis, although a bootstrap procedure was employed for their 

construction. When categorical variables are ordinal in nature showed that the radii 

of these circles are identical to those of  Lebart et al. (1984). However the 

confidence circles derived for use in symmetrical correspondence analysis are not 

applicable for NSCA. Here we present the radii lengths of confidence circles for 

NSCA. 

Suppose that a two-way contingency table consists of row and column 

variables asymmetrically structured in the manner described in Section 2. The C–

statistic of (4) can be expressed in terms of the predictor (row) coordinates such that 
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For the jth column (predictor) coordinate, 
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Since, for higher dimensions, the coordinates will be close to zero (as the singular 

values associated with these dimensions are generally relatively close to zero), the 

relationship between the jth column coordinates for the first two dimensions of a 

two-dimensional non-symmetrical correspondence plot is 
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At the 5% level of significance, this can be expressed as 
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Therefore, the 95% confidence circle for the jth column coordinate in the two-dimensional 

non-symmetrical correspondence plot has a radius of length  
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Note that (5) depends on the jth marginal proportion classified into that category. 

Thus, if there is a very small number of classifications made in the jth predictor 

category, its radius length associated with this category will be relatively large. 

Similarly, for a relatively large classification, the radius length will be relatively 

small. Since we are interested in the predictability of the row categories given the 

column categories, confidence circles will only be constructed for the predictor 

variable.  

Careful attention must be given to the interpretation of these regions. They do 

not suggest that a point has any significant link with an axis, since the axes have no 

direct interpretation (other than to graphically depict the proportion of the 

association between the variables it reflects). Overlapping regions may provide some 

indication as to the level of association between intra-variable categories but they do 

not provide formal evidence that such an association exists, although employing the 

uncertainty circles of Gabriel (1995) can provide such insight. The real strength of 

the confidence circles described here lies in their ability to reflect the significance of 

a particular predictor category in accounting for the level of predictability on a 

response variable. If the origin is enclosed within the confidence circle of a predictor 

category, then that category does not contribute to the predictability of the response 

variable. Similarly, if the origin falls outside of a confidence circle, then that 

particular predictor category does contribute to the predictability of the response 

variable. Such conclusions can be made keeping in mind the level of significance 

used to construct these circular regions.  
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4. Multiple NSCA – The Gray-Williams index 

Suppose we consider the cross classification of n individuals/units according to three 

categorical variables 1X , 2X  and Y, that form a three-way contingency table, N. 

Let 1X  be the second (column) variable that consists of c categories, 2X  be the 

third (tube) variable that consists of t categories, and Y be the first (row) variable 

consisting of r categories. The terminology “tube” is used to be consistent with 

much of the discussion that has been made on multiple categorical data analysis; for 

example, Kroonenberg (1989) uses the expression. One may also consider 2X to be 

a stratifying variable. The resulting contingency table is therefore of size tcr ×× .  

Here we consider the relationship between the three variables to be asymmetric, in 

that Y is the response variable and depends on the two predictor variables 1X  and 

2X . 

To measure the asymmetric association of the three variables, one may 

consider multivariate extensions of the Goodman-Kruskal tau index.(Anderson-

Landis 1980 ) Two examples include Marcotorchino’s index and Lombardo’s index. 

Another measure, with which we will concern ourselves here, is the Gray-Williams 

index (Gray-Williams 1975). 

Let ••• −=π ijkijkijk pp/p , for i = 1, 2, . . . r, j = 1, 2, . . . c and k = 1, 2, . . . , t, be 

the difference between the unconditional marginal proportion of the ith response 

category, ••ip , and the (conditional) prediction of the ith response given the joint 

proportion of the two predictor variables, jkijk p/p • . Gray-Williams (1975) 

proposed an extension of the Goodman-Kruskal tau index for three categorical 

variables where the proportional reduction in error for the prediction of the response 

(row) variable can be measured by considering 
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Just as was done for the Goodman-Kruskal tau index of (2), the numerator of the 

Gray-Williams index, GWnumτ , will be the focus of our discussion here, since the 

denominator is independent of the any of the joint cell proportions of the table N. 

To determine the structure of the dependence between three categorical 

variables (one criterion variable and two predictor variables), one may consider a 

three-way extension of the SVD of (3): 
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This approach is analogous to the PARAFAC/CANDECOMP models independently 

considered by Harshman (1970) and Carroll-Chang (1970) (Faber et al 2003). An 

alternative approach was considered by Lombardo-Carlier-D’Ambra (1996). For 

their approach, ijkπ  (constructed to reflect the variation in predictability as 

measured by the Marcotorchino index) is decomposed using the Tucker3 

decomposition (Tucker 1966). 

Another method of decomposition that can be considered is 
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where ( ) 1tc,rminM −+=  and ima  and jkmb  are subject to the constraints 
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respectively. This approach is called Multiple Non Symmetrical Correspondence 

Analysis (MNSCA). 

The generalised singular values, mλ , are again arranged in descending order 

such that 01 21 >>>>> Mλλλ L . The value ima is an element of the singular 

vector ma  and is associated with the ith row response category. Similarly the value  

jkmb  is an element of the joint singular vector mb  of length ct and is associated with 

the joint association between the two predictor variables. The calculation of these 

quantities can be easily performed, not through any modification of the SVD 
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procedure of (3), but by simply concatenating one of the predictor variables to form 

a two-way table.  

To demonstrate this point, suppose we transform the tcr ××  contingency table N 

in such a way that the tube predictor variable is concatenated so that N is of size 

ctr × .  

For the kth (k = 1, 2, . . . , t) cr ×  submatrix, the Goodman-Kruskal tau numerator, 

knum|τ , is 
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Aggregating each of these t measures of asymmetry yields 
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Which is the numerator of the Gray-Williams index, GWnumτ , defined by (6).  

For a concatenated three-way contingency table with response (row) marginal 

proportions { }•• r1 p,,p K  and predictor (column) marginal proportions 

{ }ct2111 p,,p,p ••• K , equation (8) is equivalent to the Goodman-Kruskal tau index. 

This is apparent since 
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Therefore, the Gray-Williams index for the tcr ××  contingency table, N, is 

equivalent to the Goodman-Kruskal tau index when concatenating a predictor 

variable. When performing a NSCA for a three-way contingency table, the influence 

of the predictor variables 1X  and 2X  on the response variable Y may therefore be 
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made by considering the SVD of the concatenated data. By considering the 

concatenated contingency table, NSCA can be applied to obtain profile coordinates  
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ima  is the ith element of the mth singular vector associated with the rows of 

the concatenated table. Similarly 
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)( mjkb  is the (j, k)th element of the mth singular 

vector associated with the columns of the concatenated table, and 
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mλ  is the mth 

singular value. 

By considering (9) for the concatenated NSCA, the numerator of the Gray-Williams 

index may be expressed as the weighted sum of squares of these coordinates so that 
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For the application of confidence circles we consider Gray-Williams τ  and  the C-

statistic of  Anderson –Landis   
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Under the hypothesis of zero predictability ( 0:0 =Π ijkH ), Anderson Landis (1980)    

showed that the C-statistic is asymptotically chi-squared distributed with 

( )( )11 −− ctr  degrees of freedom.  Therefore the radius can be computed as shown 

in formula (5). 

5. Analysis of interaction term  

Interaction effects represent the combined effects of predictor variables on the 

response variable. When interaction effects are present, the impact of one predictor 

variable depends on the level of the other predictor, in other words it means that 

interpretation of the main effects is incomplete or misleading. 

In case of no interaction effect, a difference in level between the two lines 

would indicate a main effect of predictor variable. 

Many texts stipulate that you should interpret the interaction first. If the 

interaction is not significant, you can then examine the main effects without needing 
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to qualify the main effects because of the interaction. If the interaction is significant, 

you cannot examine the main effects because the main effects do not tell the 

complete story. It seems that it makes more sense to tell the simple story first and 

then the more complex story. In the two-way case, we prefer to examine each of the 

main effects first and then the interaction. 

Regarding MNSCA, in order to consider the different effects of the predictor 

variables (main and interaction effects) on response variable, our approach starts 

from the exact reconstruction formula of the contingency table using eigen values 

and coordinates, particularly  
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The coordinates  jkmg (for j = 1, 2, . . . c and k = 1, 2, . . . , t ) include the main 

effects (j,k) and the interaction (jXk), the 
ima  (for i = 1, 2, . . . r) are the row 

coordinates (response variable) and mλ is the eigenvalue with 

[ ])1();1(min −−= ctrm  equal to the rank of matrix.  

We replace in formula (10) the coordinates jkmg  (m=1….M) with the 

functions jmh  and kmw  obtained by two way analysis of variance without 

interaction. 
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This new matrix  P̂  represents the dependence between categories of rows and 

columns after the elimination of the interaction effect. Performing a MNSCA on P̂  

we improve the interpretation of the main effect, to be more precise we represent 

only the effect of the prediction variables on the response variable purified to the 

interaction between predictors.  
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The choice of this functions yields the following orthogonal decomposition: 
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The Gray Williams “Multiple” numerator =   Main effects  +  Interaction  

 

It easy to verify that the matrix P̂ , with general terms kijp ,
ˆ , and P  have the same 

column and row marginals. Moreover considering the matrix PPP ˆ−=  and 

performing a MNSCA, we compute the analysis of the interaction between 

predictors without the main effects. 

It is possible to show that if in our approach we use one-way analysis of 

variance instead of two way analysis of variance without interaction, we get the 

solution proposed by Takane-Jung (2009) based on linear constraints on the 

predictor categories (Takane-Shibayama 1991). In this last case the Gray-Williams 

multiple τ  is decomposed in two components: the formes gives the Goodman- 

Kruskal numerator and the other gives partial numτ Gray-Williams.  

6. Case study 

In this section, we present a detailed application of the proposed method. The case 

study pertains to the analysis of a 5 x 6 x 4 contingency table obtained cross-

classifying subjects by mathematical score at University, teaching method used and 

final grade at school (independence variables). The data collected are placed in a 

bivariate table (table 1).  
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Table 1. Cross classification of students in term of mathematical score at University 

(criterion variable), teaching method used and final grade at school (predictor 

variables) 

Method A A A A A A 

School 

score 

School 

very 

low 

score 

(---) 

School 

low 

score 

 

(--) 

School 

middle 

low 

score  

(-) 

School 

middle 

high 

score  

(+) 

School 

high 

score 

 

(++) 

School 

very 

high 

score  

(+++) 

Mathematic score 

very low  
(--) 

12 10 9 8 6 5 

Mathematic score 

low  
(-) 

7 18 8 3 6 4 

Mathematic score 

middle 
(±) 

1 8 10 5 1 1 

Mathematic score 

high  
(+) 

2 8 6 12 16 5 

Mathematic score 

very high 
(++) 

5 2 9 6 12 25 
 

Method B B B B B B 

School 

score 

School 

very 

low 

score 

(---) 

School 

low 

score 

 

(--) 

School 

middle 

low 

score  

(-) 

School 

middle 

high 

score  

(+) 

School 

high 

score 

 

(++) 

School 

very 

high 

score  

(+++) 

Mathematic score 

very low  
(--) 

12 10 5 5 4 4 

Mathematic score 

low  
(-) 

5 7 7 4 2 2 

Mathematic score 

middle 
(±) 

1 6 6 4 3 2 

Mathematic score 

high  
(+) 

5 4 3 17 11 3 

Mathematic score 

very high 
(++) 

3 3 2 5 9 28 
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Method C C C C C C 

School 

score 

School 

very 

low 

score 

(---) 

School 

low 

score 

 

(--) 

School 

middle 

low 

score  

(-) 

School 

middle 

high 

score  

(+) 

School 

high 

score 

 

(++) 

School 

very 

high 

score  

(+++) 

Mathematic score 

very low  
(--) 

2 3 4 1 3 2 

Mathematic score 

low  
(-) 

4 5 8 2 4 5 

Mathematic score 

middle 
(±) 

5 6 9 6 7 8 

Mathematic score 

high  
(+) 

5 8 13 13 22 23 

Mathematic score 

very high 
(++) 

20 22 30 35 40 45 
 

Method D D D D D D 

School 

score 

School 

very 

low 

score 

(---) 

School 

low 

score 

 

(--) 

School 

middle 

low 

score  

(-) 

School 

middle 

high 

score  

(+) 

School 

high 

score 

 

(++) 

School 

very 

high 

score  

(+++) 

Mathematic score 

very low  
(--) 

1 1 3 2 1 1 

Mathematic score 

low  
(-) 

2 2 5 4 2 2 

Mathematic score 

middle 
(±) 

2 2 7 7 8 9 

Mathematic score 

high  
(+) 

5 6 16 12 18 21 

Mathematic score 

very high 
(++) 

12 20 24 28 38 44 

Source: own creation 

 

The first variable is a response or criterion variable and it has five classes of ordered 

categories: 18-20 (VL), 21-23 (L), 24-26 (M), 27-29 (H), 30 (VH). The second and 

third variables are predictor variables. The variable Final grade at Italian school are 

grouped in six categories: 60-64 (---), 65-69 (--), 70-79 (-), 80-89 (+), 90-94 (++), 

95-100 (+++). Teaching methods has four categories: Technological tools - 

Projector/video/slide (A), Problem solving Brainstorming (B), Direct Teaching (C) 

and Lecture (D). The symbol in parentheses are the label in graphic representations. 

In order to analyze the statistical dependence of mathematical score at 

University from teaching method used and final grade at school we perform a 
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MNSCA. We represent the two dimensional configuration as the best solution in 

Figure1, particularly in the left side we plot the criterion categories, in the right side 

we project the modalities of the predictor variables.  

In order to selection the dimension we use permutation test. It works in the 

following way: first, on compute the singular value (SV) from the original data set. 

Then, the columns of predictor variables are randomly permuted, and SV’s are 

computed from the permuted data set. The largest SV from the permuted data set is 

compared with that from the original data set. To test the statistical significance of 

the SV from the original data set, we repeat the same procedure K time (with K very 

great) and count how many times the former is larger than the latter. If this count is 

smaller than Kα  (where α  is the prescribed significance level), the largest SV 

being tested is significantly different from 0. Each subsequent SV can be tested in 

the same way after eliminating the effect of the preceding SV’s. In our case we 

found two axis significative. 
 

Figure 1. Classical MNSCA (a) row coordinates (b) column coordinates (total 

inertia explained 91,51%) 
 

(a)      (b) 

 
Source: own creation 

 
The predictive power of a particular predictor category on a particular criterion 

category can be evaluated by the magnitude of the inner product between the two 

vectors representing the two categories. For example overlapping the two plots we 

can remark that A (+++) and B(+++) are closest to VH (the highest mathematical 

score).  This means that the students having the highest final grade at school and 

used as teaching method A and B have achieved highest mathematical score. 
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In table 2, for each category has been computed the radius of confidence circle 

and the distance from the origin of the axes. The decision rule is: if the radius is 

greater than the distance then the category is significant 
 

Table 2. Radius of the Confidence Circle and Distance from the origin of the axes 

(* Category statistical significant at the 5% level). 

 
 Distance 

from  

origin 

Radius  

A(---) 0,453 0,200* 

A(--) 0,476 0,153* 

A(-) 0,279 0,160* 

A(+) 0,299 0,178* 

A(++) 0,204 0,162* 

A(+++) 0,223 0,164* 

B(---) 0,447 0,204* 

B(--) 0,438 0,190* 

B(-) 0,424 0,217* 

B(+) 0,384 0,176* 

B(++) 0,189 0,193 

B(+++) 0,330 0,166* 

C(---) 0,158 0,173 

C(--) 0,087 0,157 

C(-) 0,049 0,130 

C(+) 0,214 0,138* 

C(++) 0,140 0,119* 

C(+++) 0,151 0,114* 

D(---) 0,128 0,221 

D(--) 0,235 0,187* 

D(-) 0,074 0,140 

D(+) 0,118 0,143 

D(++) 0,182 0,127* 

D(+++) 0,188 0,118* 

Source: own creation 

 

The classical MNSCA is based on the decomposition of Gray Williams “Multiple” 

τ including together main effects and interaction term. In order to know the 

statistical significance of the single main effect and of the interaction, we can use the 

factorial representation analysis of variance of nominal data (Onukogu 1984). The 

results are summarized in table 2. 
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Table 3. CATANOVA table 

 
Source   SS C-statistic dof p-value 

Final grade at school  (1) 0,021 22,75 5 0,0002 
Teaching methods (2) 0,029 31,26 3 0,0000 

Interaction   (3) 

Final grade at school *Teaching methods 
0,018 19,98 15 0,0447 

Between  (1) + (2) + (3) 0,068 73,99 23 0,0000 

Within 0,652  1053  

Total 0,720  1076  

Source: own creation 

 

All the sources of variation are statistically significant, therefore the levels of 

Matematical Score depends on the final grade at school, on teaching methods and on 

their interaction. In classical MNSCA the effect of interaction could make unclear 

the interpretation of the axis. 

Following the approach proposed in section 5, we can separate the effect of 

the main sources of variation from the interaction. Particularly in figure 2 and 3 we 

represent the main effects and the interaction term respectively. Following the 

procedure presented previously, in both cases the dimension selected is composed 

by two axis significative.  
 

Figure 2. MNSCA only main effects (a) row coordinates (b) column coordinates 

(total inertia explained 94,83%) 
 

(a)              (b) 

 
Source: own creation 

 



Decomposition of the Gray-Williams “tau” in main and interaction effects by ANOVA in 

three-way contingency table 

 

73 

In figure 2, we note that overlapping the two plots the predictor categories closest to 

VH (the highest mathematical score) are C (+++) and D (+++), moreover it seems 

that the teaching methods more effective are C and D because all categories of Final 

grade at school are closest to the criterion categories  VH and H. 

Considering only the main effects, in table 4 for each category has been 

computed the radius of confidence circle and the distance from the origin of the 

axes. The decision rule is: if the radius is greater than the distance then the category 

is significant 

 

Table 4. Radius of the Confidence Circle and Distance from the origin of the axes 

(* Category statistical significant at the 5% level) for main effects 
 

 Distance 

from  

origin 

Radius  

A(---) 0,339 0,200* 

A(--) 0,341 0,153* 

A(-) 0,308 0,160* 

A(+) 0,213 0,178* 

A(++) 0,176 0,162* 

A(+++) 0,070 0,164 

B(---) 0,312 0,204* 

B(--) 0,317 0,190* 

B(-) 0,288 0,217* 

B(+) 0,207 0,176* 

B(++) 0,174 0,193 

B(+++) 0,036 0,166 

C(---) 0,106 0,173 

C(--) 0,072 0,157 

C(-) 0,032 0,130 

C(+) 0,142 0,138* 

C(++) 0,180 0,119* 

C(+++) 0,281 0,114* 

D(---) 0,087 0,221 

D(--) 0,051 0,187 

D(-) 0,034 0,140 

D(+) 0,164 0,143* 

D(++) 0,201 0,127* 

D(+++) 0,292 0,118* 

Source: own creation 

 

These results are supported by the plot of interaction in which we can observe how 

the students with the highest score in mathematic are those that  had the best Final 

grade at school and used A and B teaching methods. 
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Figure 3. MNSCA only interaction effect (a) row coordinates (b) column 

coordinates (total inertia explained 86,34%) 
 

      (a)               (b) 

 
Source: own creation 

 

In this paper we have presented a method of analysing two complementary 

parts of the predictive relationships between the columns and rows of a three way 

contingency table, one part can be explained by main effect of predictive categories 

on criterion variable and the other represents the effect of interaction between the 

two predictive variables on the criterion variable. The usefulness of the method is 

shown by a study regarding the statistical dependence of mathematical score at 

University from teaching method used and final grade at school. 
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