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The increasing role of technological advancement in a nation’s economic performance is also 

reflected in the recent changes to the System of National Accounts. As a result of the 2008 

modifications in this macroeconomic accounting system, the expenses of research and 

development (R&D) are accounted as accumulation of capital and capitalized on the balance 

sheets. In the present research paper, I compare the strength of detectable relationships 

between the growth in economic performance and the different measurements of R&D at the 

level of nation economies. R&D is taken as stock type data from newly available statistics on 

the one hand and computed from flow type data on the other. The computation methods are 

tested with a regression using data from 2009 to 2017 for 15 European countries. The analysis 

may highlight not only the importance of technology, but also reveal information on the 

accounting treatment of R&D expense 
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1. Introduction 

The most important change in the 2008 version of the System of National Accounts 

(SNA) is the capitalization of research and development (R&D) costs as intangible 

assets on the balance sheet of a nation's economy (EC et al. 2009). This change has a 

twofold relevance in the advancement of economic analysis studies. First, it highlights 

the ever-increasing importance of and attention paid to R&D activities as the engines 

of growth for modern economies. The new regulation is expected to give more 

opportunities to analysts to find better articulated relationships in the behaviour of 

such activities. Second, the capitalization of R&D is part of a lengthy process of 

extending the asset boundary accounted for in the national accounts. In fact, it seems 

to be a considerable milestone, since earlier capitalized assets all have reasonably fair 

and justifiable evaluation methods. In the case of R&D, however, the outcome of the 

investment expense is very uncertain both in magnitude and occurrence, if it happens 

at all. Under such circumstances, the evaluation and capitalization of an intangible 

asset requires more sophisticated approaches and methods on the part of economists 

and statisticians.  

Is the capitalization of R&D in the national accounts of real help to economic 

analysis? The main question of this study is whether estimation results can be 

improved using the new stock type statistical data available due to this capitalization, 

instead of those calculated from flow type data in the old-fashioned way. Since the 

most important research question in the field of R&D from a macroeconomic point of 

view is the productivity growth achieved by R&D investments (Hall et al. 2009), I 
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test the estimated values of R&D assets on an equation, which aims to find an 

economy’s elasticity of overall productivity on the change of R&D assets. 

In the second chapter I outline the asset capitalization problem, and the 

extension of the asset boundary from both the economist’s and the statistician’s point 

of view. In the third chapter I review the literature analysing the productivity of R&D 

at the macroeconomic level. Emphasis will be given to the choice and calculation of 

the R&D input, since that is the variable, which can be changed in the models to 

available statistical data. In the fourth chapter I prepare R&D productivity estimations 

with the help of a regression of 15 European countries with available data for the 

period between 2009–2017. The first two estimations will be performed with newly 

available statistical data of R&D assets, while the third and fourth estimation is 

prepared with R&D stock data calculated from the flow type R&D capital formulation 

data from the same data set in the way specified in earlier studies. Finally, the 

statistical and economic relevance of the two estimations will be compared. 

2. Extension of the asset boundary 

Initially macroeconomic models identified two distinct resources as factors of 

production and economic activity, labor and capital (Lichtenberg 1992). The 

interpretation of these factors was rather simple in taking into account only the 

tangible aspect of activities, and dividing it into a human related part in the one hand 

(labor) and a tool and structure related part on the other (capital). Both factors are 

essential for economic activity, still they behave in very different ways. 

As for the tool and structure part, it was regarded as useful in the long-term 

in activities. These resources owned and operated by individuals and organizations 

and used over a longer period of time have to be planned and managed in order to 

achieve reasonable returns. Planning and management require measurements of value 

on the basis of expected future performance. Such measurements are then registered 

in regular points of time in a document listing the resources and their value to show 

the wealth, that is, the potential to produce useful goods and services for every 

economic unit. This document is generally called the balance sheet, where the use and 

the changes in the value of listed resources called assets, can be followed. Including 

an asset into this list is consequently called capitalization, signaling that the item is 

regarded as capital, or physical capital in a narrower sense (Lequiller-Blades 2014). 

Therefore, it was inevitable from the beginning that tools and structures have to be 

evaluated and accounted for as economic assets on balance sheets, that is, they have 

to be capitalized. 

The human related part of production factors, on the other hand, proved to be 

much more difficult to evaluate. It is hard to decide whether these resources are 

utilized in a longer or a shorter run, while their productivity is highly uncertain. Both 

evaluation and management seemed to be almost impossible at first sight, because in 

this case we do not know the length of the utilization period, and also the performance 

of future periods can vary greatly. Moreover, it is not possible to put them onto a 
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balance sheet, because they are inseparable from human beings, which in turn cannot 

be owned by economic units under the laws of modern societies respecting human 

rights (Lequiller-Blades 2014). The behavior of a human being will always carry more 

uncertainties than that of tools, machines and structures, therefore it was prudent to 

handle resources related to them separately, while avoiding their evaluation and 

capitalization in a balance sheet is also understandable. 

Intangible drivers of growth and development like technological change were 

regarded to be exogeneous to these first-generation models (Lichtenberg 1992). This 

means that due to difficulties of interpretation and evaluation, economic accounting 

did not engage in predicting their future effect and regarded them to be out of the 

scope of economic calculations. This approach is understandable to a certain extent, 

as economists may not want to base calculations on overly unpredictable phenomena. 

However, the need of societies changed this situation. 

Economists identified certain intangible factors of production included in 

those termed residual or technological change, and of which it was possible to find 

out at least something, even if punctual calculations were not feasible (Griliches 

1998). Among these, human capital was the first, defined as the knowledge and 

experience of working people, which can be estimated by the means of measuring 

education activities (Lichtenberg, 1992). The human capital theory, building on the 

similarities of knowledge and physical capital, started to show the way ahead to 

including more types of resources in macroeconomic models and including them in 

calculations like endogenous factors. However, uncertainty still remained in terms of 

measurements, utilization period and productivity, and therefore evaluation and asset 

capitalization did not seem to make sense.  

Likewise, a wide range of other types of intangible capital were researched, 

however measurement problems remained, therefore including them in capital 

formation and their capitalization was viewed as highly problematic (Vanoli 2005). 

Though the preface of the 1968 SNA prompted fast development in the modification 

of SNA recommendations to include balance sheets in the system, and extend the 

boundary of the included circle of assets (UNITED NATIONS 1968), these 

developments came along only partially in the 1993 modification (Vanoli 2005). 

The most suitable intangible assets to be included in the SNA balance sheets 

and capital formation were those related to technological change. These, including 

R&D values, were widely researched in the preceding decades. The relationship 

between productivity and R&D received special attention, though mainly at the micro 

level (Lichtenberg 1992). This focus was understandable, if we take into account that 

most of the growth and the events of economies cannot be explained by the use of 

traditional types of resources, only by the ambiguous "residual" (Griliches 1998). On 

the basis of research conducted by Griliches and others, R&D expenses and assets 

seemed to play a major role in inducing economic growth. However, the quality of 

data available for such research was poor in many respects, especially in the case of 

R&D assets, although not only in their case. 

According to the above proceedings, it was expected that in the course of the 

1993 modifications of the SNA, R&D expenses would be included in capital 
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formation and capitalized on the balance sheets, which were officially incorporated 

into the account system.  Unfortunately, this was not to happen at that time. Debates 

started around the evaluation accuracy of human capital and finally its capitalization 

was rejected. Confidence wavered in accounting for intangibles altogether (including 

intangible human capital, R&D and other intangibles) and finally the experts among 

national accountants decided not to capitalize R&D expenses, either (Vanoli 2005). 

Nevertheless, some progress was made as a small group of intangibles, including 

software, artworks and expenses on mineral exploration were adopted as capital 

expenses, and therefore included on the balance sheets. 

This stumbling in the process of extension of the asset boundary was corrected 

in the next round of modifications to the SNA. In 2008, the most important change 

was that capitalization of R&D assets became recommended, meaning they were now 

regarded as long term intentional investments in future performance. This change also 

brought about the change in the balance sheet that complete R&D results are now 

accounted for as produced assets, thus fully integrated into the logical sequence of the 

SNA similarly to produced tangible assets. With this step it is acknowledged also in 

statistics that technological change is not an exogeneous factor to the economy, as it 

was anticipated by the early macroeconomic models, but that technological 

development can to a certain extent be managed through the control of the R&D 

expenses which fuel it. The changes were consequently recommended in ESA 2010 

(European System of Accounts), the corresponding set of rules for the statistics of the 

European Union (EC et al 2009, EUROSTAT 2014/a). 

The need for further extensions of the asset boundary, that is, including further 

asset types in the balance sheet and capital formation is obvious from the perspective 

of economists, as stock type data are consistently used in economic analyses as 

variables. These variables, however, have been mostly calculated from the available 

statistics by simplified methods according to the limited possibilities of economists 

using them (e.g. calculations of Guellec and van Pottelsberghe 2001). Perhaps, 

economic analyses would be more informative, if the calculation of the values of R&D 

assets is done by statisticians applying a wider information basis. If we wish to find 

explanations for the changes in productivity in economies, we should seize any 

opportunity to calculate the value of intangibles more accurately. The importance of 

innovations, knowledge, communication, and many other intangibles in productivity 

growth has been inevitable since at least the 1980’s (Vanoli 2005).  

However, there are fundamental problems to asset evaluation in the case of 

intangible assets. By general definition, the value of an asset can be calculated at best 

with its future contribution to economic wealth. This value can be estimated by the 

markets as the average evaluation of market players or can be estimated by economists 

applying for example net present value calculations (Lequiller-Blades 2014). Mostly, 

market prices are considered to be closer to the true value, though in their absence, at 

cost calculations are thought to be the second-best solution for asset evaluation 

(EUROSTAT 2014/b). At present, uncertainty is high in every aspect of asset 

evaluation when applied to intangibles. The problems are listed in the next three 

paragraphs. 
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First of all, we cannot be sure of what we are measuring by economic wealth 

or economic growth. Some assets contribute to the well-being of people, though this 

performance is not measurable, and if it is not paid in money, is not regarded as 

economic (Hall et al. 2009). On the other hand, some measurable contributions do not 

really serve true development of a society, therefore measured productivity may not 

be in line with the development of a country or region. However, these uncertainties 

are equally true for tangible assets, so it should not affect the extension of the asset 

boundary to include more intangibles. 

Second, it is often cited, especially in the case of R&D, that results from such 

expenses occur in a random way, therefore the positive relationship between R&D 

investment and productivity cannot be justified (Vanoli 2005). This argument can be 

countered with the statistical success of such investments. At the macroeconomic 

level R&D expenses are very likely to produce good results even if lots of individual 

projects fail. It is also worth noting that positive relationship between R&D and 

productivity is definitely revealed even at the micro level using only poor-quality data 

(Griliches 1998). 

Third, the measurement of consumption of R&D is uncertain, as well. 

Intangibles do not have depreciation as defined in the case of tangible assets. The 

amortization of intangibles comes from obsolescence instead of planned wearing out. 

Again, this is also the case with many tangible assets (Vanoli 2005), therefore this 

should not be an obstacle in the way of expanding the asset boundary. 

Intangible assets are difficult to mobilize, many of them do not have a market 

at all. In the absence of market prices, asset evaluation cannot be regarded as punctual. 

The secondbest estimation of evaluating them at cost often results in lower values than 

for those assets valued by markets. In the case of R&D evaluation, this phenomenon 

often occurs in connection with government investments (Griliches 1998). In case of 

self-production or common consumption, the additional value given by the market to 

the asset is missing. Though this argument is valid indeed, it is a common feature with 

some of the tangible assets. 

The problems of asset evaluation are inevitably present in the case of R&D 

assets. Still, they are profoundly different from human capital in that they are 

separable from the human being and belong to economic units. Obsolescence can be 

traced, and therefore their evaluation is not much more difficult than that of tangible 

assets. In fact, even investment in the most conventional tangible assets has always 

involved some risks (Vanoli 2005). 

Taking the above into account, including R&D assets on the balance sheet 

and in capital formation seems justifiable. It had been demanded by economists 

researching the topic for a long time, and the need for possible explanations of changes 

in economic performance will necessitate more research towards extending the asset 

boundary even further. Still, asset evaluation problems warn us to be cautious 

(Räth 2016). If the value calculated for intangible assets does not represent their real 

value, calculations done with them may secede from reality, and economists may once 

again end up being unable to provide valid explanations for the events of economies. 

This risk, however, has always been present in economic research. The economy 
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cannot be described by the old models of easily interpretable tangibles any more. 

While these models may still be valid, their explanatory strength has certainly 

lessened (Griliches 1998), and therefore measuring new assets and new relationships 

is necessary, even if the uncertainty in using them is ever increasing. 

3. Analyses on the effectiveness of R&D activities at the macroeconomic level 

Research on the effect of R&D on economic performance started almost 

simultaneously with the creation of macroeconomic models in the 1950-ies (Griliches 

1998). The basic model interpreted the residual in economic growth not accounted for 

when calculating the effect of conventional factors of production, as the effect of 

technological change. Taking this as a starting point, it was simply natural to continue 

thinking in the direction of finding a relationship between R&D and productivity. 

However, this research took place mainly at the micro level. 

The macro level studies were conducted either as cross-country comparisons 

or temporal case studies. The first combined estimation was done by Lichtenberg only 

in 1992 (Lichtenberg 1992, Hall et al. 2009). The basis of research in most cases was 

the traditional Cobb-Douglas production function augmented with research and 

development as an additional type of capital. In older studies, R&D was examined 

together with other capital types, most importantly with conventional physical capital, 

but sometimes with human capital, as well. However, even R&D capital was further 

divided into different parts already in earlier research, as their effect on productivity 

was expected to be different. As for the combined effect of all R&D investments it 

was remarked that the effect is positive and significant (Hall et al. 2009). 

The positive and significant effect of R&D on productivity was measured 

through very different models and approaches. The dependent variable (productivity), 

the independent variable of interest (R&D), and the control variables were constructed 

in different ways. It is remarkable that in all cases the result was a statistically 

significant and positive coefficient (Hall et al. 2009). 

The dependent variable in these equations is a performance measurement, 

which can be either a productivity ratio (level estimation) or its growth rate. A 

productivity ratio divides a performance indicator by the amount of resources used up 

to produce it. The performance indicator in macroeconomic studies is most often the 

GDP or some other aggregated income figure (sometimes called output), while the 

dividing amount of resource can be one or more of the factors of production accounted 

for in the model. The total factor productivity, for example, takes into account both 

capital and labor when dividing GDP or value added, but in many cases, the number 

of working or working-aged people, perhaps even population size, represent the 

amount of resources.  

The independent variable of interest, which in this case represent the R&D 

activity, can be a stock type amount showing the accumulated value of R&D assets, 

or a flow type amount as expenses or investments. In many cases the independent 

variable of interest is a ratio itself, dividing the R&D amount by economic 
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performance or total investments. In these cases, the variable of interest is the share 

of R&D within the total of activities. The growth rate of R&D amounts also can be 

regarded as an independent variable. Regarding the long term and uncertain nature of 

R&D investments, it is worth including some lags into the regression. Often the R&D 

figures are those of some previous years or computed as the average of earlier years 

compared to the dependent variable. 

The distinction between stock and flow type measurements deserve special 

attention. Most of the studies apply a stock type R&D amount (Guellec-van 

Pottelsberghe 2001, Chandra et al. 2018). The rationale behind this may be that in 

case of long-term assets the expenditures will have an effect in more future years, 

therefore probably would not give a good estimation result in a regression with one 

dependent variable. However, stock type data is more difficult to access. In case of 

R&D, it is hardly observable directly. If there are no statistics available, economists 

can compute an R&D stock figure from flow type data for example with the help of 

the perpetual inventory method, which is also widely used (Lequiller-Blades 2014, 

Guellec-van Pottelsberghe 2001). The problem here is that for this method we need 

to know the amount of investment and depreciation for all the years. Investments as 

flow type data are mostly available, though we may have serious problems with 

depreciation rates. If no better estimation is available, it is possible to use a fixed 

depreciation rate. However, it has to be remarked that depreciation in the case of 

intangible assets like R&D is obsolescence and called amortization (Vanoli 2005). 

Amortization means devaluations, which do not happen in equal portions in a timely 

manner as in the case of planned depreciation of physical assets, therefore fixed 

depreciation rates in case of intangible assets certainly would distort the results. This 

is due to a fundamental difference between tangible and intangible assets, that tangible 

assets do lose further utilization capacity when used, while intangibles remain equally 

useful for an indeterminable length of time. If they lose value, it occurs as 

obsolescence and not as a result of utilization, therefore it would be inappropriate to 

relate their service to their loss in value within a time period. 

Regressions of productivity and R&D may include a series of control 

variables. Mainly, these are country specific variables of size or economic situation. 

In case of panel regressions, it is also possible to include time lag variables of the 

dependent variable. 

In the literature, relatively few studies deal with cross-country and temporal 

comparisons together (Hall et al. 2009). Measurement problems and the poor 

availability of data may have discouraged this type of research for a long time. With 

the 2008 modification of the SNA, comparable stock type R&D statistical data is now 

available for many countries, therefore panel research will perhaps be easier in the 

future. Anticipating this, it is worth outlining previous research done in this specific 

direction.  

First, Lichtenberg made a comparison between data from 74 countries all over 

the world in 1992. He used real GDP/working age population as an overall 

productivity ratio for the dependent variable of the regression calculated for the year 

1985. The independent variable of interest was the share of nominal R&D investments 
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in nominal GNP in a 25-year average between 1964 and 1989. The author examined 

several other factors of production, among them human capital and physical capital, 

and controlled for the population growth rate. A fixed depreciation rate of 0.03 was 

applied. The estimation was done also for the growth rate dependent variable version. 

The results of the non-linear least squares regression showed that both R&D elasticity 

and production function parameters were in positive relationship with productivity 

over this longer period, and their significance and strength was equally high as those 

of physical capital (Lichtenberg 1992).  

Guellec and van Pottelsberghe prepared a panel regression for 16 OECD 

countries for the years 1980–1998 (Guellec and van Pottelsberghe 2001). Their 

dependent variable was the multi factor productivity of the industrial sector. For 

independent variables they used R&D stock figures calculated by the perpetual 

inventory method with a fixed depreciation rate of 0.15. They were interested in the 

coefficients of the domestic business R&D stock, the foreign capital stock and the 

public R&D stock, but did not calculate the strength of relationship between the 

overall R&D stock and productivity. R&D stocks were taken into the regression 

equation with a two-year lag, while their growth with a one-year lag. Productivity 

growth was also included with one-year lag and productivity level with a two-year 

lag. For control variables a business cycle effect was included and a dummy variable 

for Germany signaling the years before and after unification. The model was 

estimated with 3 stage least squares and seemingly unrelated regression estimation 

methods. The results of regressions showed positive elasticity for all the three types 

of R&D stocks.  

All these results reinforce the notion that the relationship of R&D and 

productivity in an economy is positive. Time lags in the independent variables should 

be included, though there are different methods of doing this. However, the use of 

stock type R&D data seems to be necessary (Hall et al. 2009), even if they can be 

calculated only with serious distortions. The main reason for this is that productivity 

may be boosted by research and development costs spent in many earlier years, and 

therefore the accumulated value of R&D seems appropriate for estimations. 

4. Comparison of R&D net asset statistics with R&D stock figures calculated 

from flow type data 

In this paper I examine the results of a regression equation, where the dependent 

variable is productivity at the macro level, and the independent variable of interest is 

R&D. My aim is primarily to compare the performance of newly available data with 

the results produced by more usual data processing methods. For an accurate 

estimation of the effect of R&D expenses on productivity growth, longer time data is 

needed, as it is still not possible to fully characterize their operating pattern in the few 

years that have elapsed since the 2008 financial crisis.   
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4.1. Data and Methods 

I use data of the national accounts compiled according to the rules of SNA 2008 and 

ESA 2010. This set of data already contains R&D expenses as capital expenditures, 

and R&D stock data (net assets) is also provided. The same regression is done for the 

net assets data given in the statistics, and for net assets data calculated by the perpetual 

inventory method from available R&D expenses figures. The latter method is widely 

used in econometric papers and statistics (Lequiller-Blades 2014). My aim is to find 

out whether the new rules of statistical data compilation can improve the results of 

regressions compared to earlier calculations. 

It is not usual to examine periods shorter than 12 years in a study of R&D 

effects. This can be especially problematic at the country level, since effects are not 

likely to be observable at higher levels of aggregation, where productivity is 

influenced by a multitude of factors. My reason for trying to estimate a regression 

with macroeconomic data for only 9 years is that I was curious, whether the newly 

available stock type R&D statistics can produce any better estimations than the 

previous data under these hard conditions. The regression I apply is an OLS regression 

as the length of the data time series is not adequate for a panel regression. I use the 

GDP and R&D figures of 15 European countries for the years 2009–2017. All my 

data are derived from the easily available national accounts statistics of Eurostat 

(EUROSTAT 2019). 

In my present study, the dependent variable is the growth of GDP per capita 

directly taken from Eurostat statistics. The independent variables of interest are 

different aggregated R&D data given in the national account statistics. The control 

variables are also taken from statistics and include a time trend and controls for size 

and country specifics. Undoubtedly this regression is suitable to reveal less detailed 

information that way than panel regressions used in previous studies (e.g. Guellec and 

van Pottelsberghe 2001). Still, my aim does not go further than to find results for a 

shorter period with the help of more accurate data. 

Based upon the above principles the first estimated equation with R&D net 

asset data taken directly from Eurostat statistics is: 

 

GrGDPc = const + α1 GrNA_1 + α2 GrNA_2 + α3 GrNA_3 + β LNA_2 + γi Xi + e    (1) 

 

Here the dependent variable GrGDPc is the growth rate of GDP/capita between two 

subsequent years representing the change in productivity. The regressors are the 

following: 

- const: constant 

- GrNA_1, GrNA_2, GrNA_3: the growth rates of R&D net assets statistics 

between two subsequent years in one, two, and three-year lags, 

respectively (net asset data taken directly from statistics)  

- LNA_2: the log of R&D net assets statistics in two years lag (net asset 

data taken directly from statistics) 
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- Xi: four control variables: a time trend, a country index, the log of 

population size and the log of GDP/capita in one-year lag. 

The variables of interest are GrNA_1, GrNA_2, GrNA_3 and LNA_2 as they show the 

effects of R&D on productivity. The control variables control for the time, the size, 

the economic development level, and other specifics of the countries.  

All of these regressions were conducted including a time trend for addressing 

trend stationarity. Difference stationarity, however, was not handled in the first 

regression. The reason for this is that in the case of the relationship between 

productivity and R&D, it is possible to have factors which affect productivity and the 

value of R&D in a different way, disturbing their co-movement, but still do not 

influence the underlying basic connection between them. Here, for example, I would 

point to those research results, which were not implemented in practice within the first 

years of existence. Though it is supposed that they are or would be useful, their 

application for the time can be delayed. In these cases, their productivity effect is not 

discernible. Nevertheless, they do not wear off due to this delay. Productivity may 

drop or stagnate while R&D values are relatively high or even rising, still at an overall 

scale we should not accept that this means R&D is ineffectual or not in significant 

relationship with productivity. Their true effect in my opinion can be grasped exactly 

in those non-stationary co-movements, which are eliminated by difference stationarity 

treatment.  

Despite this concern, in the second regression all variables were tested for 

stationarity and treated by differencing in order to achieve difference stationarity, as 

well. The corresponding unit root tests are included in Appendix 1, where the names 

of variables contain the letter "d" for differencing. Both regressions were calculated 

with robust (HAC) standard errors to address heteroskedasticity and autocorrelation. 

The coefficient of LNA_2 gives the component of productivity raising effects, 

which is exercised by existing and accumulated stock type R&D assets. In other 

words, LNA_2 represents the accumulated intellectual capital, which is assumed to be 

effective in a two-year lag on productivity (e.g. also in Guellec and Pottelsberghe 

2001). Since effects later on are also likely as the R&D assets do not wear off with 

utilization, it is acceptable to make calculations using the stock type figure. Valuable 

assets remain on the balance sheet and continue to have effects on productivity. The 

coefficients of GrNA_1, GrNA_2, GrNA_3 show the productivity effect of changes in 

R&D assets, that is, the flow type investments in time lags. This can be interpreted as 

an elasticity measurement or the effect of newly-created R&D capital on productivity. 

It should be noted that depreciation or utilization of R&D assets calculations were 

done by statisticians in this case. The applied stock type data were compiled with a 

very detailed version of the perpetual inventory method. This method is also used by 

statisticians, though they have more detailed information, and do more punctual 

estimations than economists can do (Lequiller-Blades 2014).  
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The third estimated equation works with R&D stock data calculated by the 

perpetual inventory method from R&D capital formation statistics by the analyst, as 

specified by Guellec and Pottelsberghe. This method estimates R&D stock from the 

actual R&D expenditures and an initial value of R&D expenses with the following 

formula: 

 

pNA = CF/(1-1/(1+(CF/CF0)
1/n (1-δ)))     (2) 

 

In this formula CF is the figure of R&D capital formation in a given year, while CF0 

is the R&D capital formation of a selected initial year. The letter n indicates the 

number of years spanning the time length of calculations, finally δ is for the 

depreciation rate. Depreciation rate was set as 0.15 by Guellec and van Pottelsberghe 

in their 2001 study of R&D effect on productivity. They also concluded that their 

model was not sensitive to the change in the depreciation rate (Guellec-van 

Pottelsberghe 2001). I applied the depreciation rate given in this basis study. As data 

for comparison with R&D, net asset statistics is available for 7 years I set n = 7. CF0 

is the R&D capital formation statistic figure of 2009.  

The third regression equation is put together partly from the same statistics as 

the first, only R&D figures are replaced by those calculated with the formula above: 

 

GrGDPc=const+α1 GrpNA_1+α2 GrpNA_2+α3 GrpNA_3+β LpNA_2+γi Xi+e   (3) 

 

Here the dependent variable is GrGDPc again, which is the growth rate of GDP/capita 

between two years. The independent variables are the followings: 

- const: constant 

- GrpNA_1, GrpNA_2, GrpNA_3: the growth rates of R&D stocks between 

two subsequent years in one, two and three-year lags respectively (net 

asset data calculated from flow data with the perpetual inventory method)  

- LpNA_2: the log of R&D stock in two-year lag (net asset data calculated 

from flow data with the perpetual inventory method) 

- Xi: four control variables: a time trend, the log of population size, the log 

of GDP/capita with a one-year lag and a country index. 

The variables of interest were changed in this third equation to GrpNA_1, GrpNA_2, 

GrpNA_3 and LpNA_2, as they are calculated in a different way, although their 

meaning and interpretation remained the same. All the other variables remained 

unchanged. 

Depreciation rate enter into this estimation as a parameter used in calculating 

the variables GrpNA_1, GrpNA_2, GrpNA_3, and LpNA_2. It is set as fixed all over 

the period and for all countries in this calculation model, since detailed information 

of its true value was not available. Regarding the special features of intangible assets, 

among them R&D stocks, counting with fixed depreciation rates can cause serious 

distortions in the results, as losing value in the case of R&D assets is anything but 

fixed in time and space. However, in case of longer time series, the approximation 
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provided by the perpetual inventory method may be appropriate in case of missing 

data on R&D assets.   

The fourth regression was also done with varibales calculated by the perpetual 

inventory method, but this time all the variables were differenced in order to address 

difference stationarity, similarly to the second regression. The third and fourth 

regressions were estimated with robust (HAC) standard errors in order to address 

autocorrelation and heteroskedasticity, similarly to the first two estimations. 

4.2. The effect of R&D on productivity calculating with R&D net asset statistics 

The results of the first regression calculation (equation (1) without differencing 

treatment) are summarized in Table 1 as follows. 

 

Table 1 Regression result of measuring the elasticity of productivity on R&D 

investment with R&D net asset statistics, European countries, 2009–2017 

 Coefficient Std. Error p-value 

Dependent variable: GrGDPc 

GrNA_1 0.113 0.064 0.1002 

GrNA_2 0.087 0.031 0.0151 

GrNA_3 – 0.005 0.069 0.9389 

LNA_2 0.058 0.025 0.0362 

R2 0.587 Adjusted R2 0.537 

Durbin-Watson: 1.04  

Source: own construction based on Eurostat data 

 

In the first case, calculating with R&D net asset statistics without difference 

stationarity treatment, the coefficient of LNA_2 is significant at the 5% significance 

level and positive. The result for GrNA_2 is also statistically significant at the 5% 

level and positive. This indicates that using data directly from statistics and the usage 

of stock type figures for estimating the effect of R&D activity on productivity is 

justified. The level of accumulated R&D has a positive effect on productivity growth 

two years later, while the effect of additional R&D investments on productivity in the 

next years is also likely.  

All these are largely in line with the findings of previous studies. R-squared 

values are also consistent with those obtained earlier (around 0.5 in Guellec-van 

Pottelsberghe 2001). Therefore, in spite of having shorter time series, it is possible 

to draw similar conclusions with the help of R&D net asset statistics to those of 

previous studies.   

The second regression calculated with the variables adjusted for difference 

stationarity (equation (1) with differencing treatment) is shown in Table 2. 
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Table 2 Regression result of measuring the elasticity of productivity on R&D 

investment with R&D net asset statistics (treated for difference stationarity), 

European countries, 2009–2017 

 Coefficient Std. Error p-value 

Dependent variable: ddd GrGDPc   

dd GrNA_1 – 0.107 0.101 0.3044 

d GrNA_2 – 0.362 0.471 0.4553 

GrNA_3 – 0.013 0.157 0.9359 

dd LNA_2 0.535 1.13 0.6431 

R2 0.806 Adjusted R2 0.783 

Durbin-Watson: 1.745  

Source: own construction based on Eurostat data 

In this case, calculating with R&D net asset statistics, the coefficient of 

ddLNA_2 is not significant after differencing. The results for the growth variables 

ddGrNA_1, dGrNA_2, and GrNA_3, are also not significant statistically. 

It is apparent that if difference stationarity requirements are not applied, 

significant results can be achieved. On the other hand, differencing the variables 

according to requirement gives no significant results. This confirms that other factors 

have significant effects on productivity, some of them affecting R&D similarly, some 

of them differently. In the meantime, R2 values and the Durbin-Watson test value 

improved a lot compared to the first case.  Also, due to the relatively short period of 

time examined, it is not possible to say much about the relationship of productivity 

and R&D under these requirements.  

4.3. The effect of R&D on productivity calculating net assets by the perpetual 

inventory method 

Results of the third regression (equation (3) without differencing treatment) are 

summarized in Table 3. 

Table 3 Regression result of measuring the elasticity of productivity on R&D 

investment with estimated R&D stock from R&D capital formation, European 

countries, 2009–2017 

 Coefficient Std. Error p-value 

Dependent variable: GrGDPc 

GrperpNA_1 0.016 0.011 0.1564 

GrperpNA_2 0.003 0.007 0.6583 

GrperpNA_3 – 0.025 0.044 0.5814 

LperpNA_2 0.044 0.033 0.1416 

R2 0.498 Adjusted R2 0.438 

Durbin-Watson: 0.829  

Source: own construction based on Eurostat data 
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The results of the third regression show that the variables of interest –  

GrperpNA_1, GrperpNA_2, GrperpNA_3, and LperpNA_2 –  do not have statistically 

significant and interpretable coefficient values. Furthermore, R-squared values are 

worse than in the first model.   

The results of the fourth regression applying variables estimated by the 

perpetual inventory method and treated for difference stationarity are given in Table 4. 

Table 4 Regression result of measuring the elasticity of productivity on R&D 

investment with estimated R&D stock from R&D capital formation (treated for 

difference stationarity), European countries, 2009–2017 

 Coefficient Std. Error p-value 

Dependent variable: ddd GrGDPc 

dGrperpNA_1 – 0.017 0.017 0.3420 

dGrperpNA_2 – 0.014 0.051 0.7836 

GrperpNA_3 – 0.022 0.092 0.8101 

dLperpNA_2 – 0.039 0.253 0.8785 

R2 0.802 Adjusted R2 0.778 

Durbin-Watson: 1.776  

Source: own construction based on Eurostat data 

In this regression neither of the included variables have significant 

coefficients, again. However, due to the differencing treatment, R2 values and the 

Durbin-Watson test variable are better than in the case of not controlling for difference 

stationarity. Differencing treatment inevitably improves the statistical features of the 

regression, still we cannot say anything else about the relationship of the examined 

phenomena other than that seemingly there is no significant co-movement at this 

stage.  

4.4. Comparison of the R&D net assets statistics and R&D stock calculated by the 

perpetual inventory method 

There are serious limitations in using the above calculations for evaluating the impact 

of R&D on productivity. The time period is too short to include the longer-term effects 

and also the circle of examined countries is limited. In the first years of the data series 

the effects of the 2008 crisis was still observable in many countries, lowering their 

productivity growth. All these problems imply that the model carries a high degree of 

uncertainty and it seems difficult to arrive at an interpretable result. For individual 

countries or years, it is not possible to draw relevant conclusions, no matter, which 

type of calculations we use. 

Taking into account all these uncertainties, it seems to be a positive result for 

measurements using R&D net asset statistics untreated for difference stationarity, the 

calculated coefficient of the R&D asset level being significant and positive in relation 

to productivity growth. The R&D stock figures, also calculated from national accounts 
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data with the usual perpetual inventory method, were not able to produce similar 

results. In order to determine the difference in their behaviour, Figure 1 shows their 

values aggregated for the included countries through the period examined. 

Figure 1 Net asset statistics and perpetual R&D stocks in 15 European countries, 

in log of million euro 

 

Source: own calculation on the basis of Eurostat data (EUROSTAT 2019). 

Data is shown with a shift in order to make them more comparable.  

 

Figure 1 shows that the values of R&D net assets were more stable throughout 

the period than values of the calculated R&D stock. The run of LperpNA is much more 

bumpy, with an outstanding value in 2015. This is not surprising taking into account 

that LperpNA is calculated from the capital formation figures of each year, which 

being flow type data, show much more variability. 

Also, using R&D net asset statistics treated for difference stationarity, the 

calculated coefficient of the R&D asset level was closer to significance than the 

figures calculated from flow data. This, however, does not say anything about the 

actual relationship of productivity and R&D, although it may be informative for the 

comparison of R&D data taken directly from the statistics and calculated by the 

perpetual inventory method by the analyst. The data of the statistics perform better 

than the calculated data even in the absence of interpretable results. 
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From the above calculations it is clear that R&D net asset statistics provide a 

better solution for macroeconomic estimations of the effects of R&D activities on 

productivity than earlier methods, which has been used in the absence of more reliable 

data. The difference between the two sets of estimations lies in the measurement of 

R&D stocks. The figures given in the statistics are compiled on the basis of more 

information with a more elaborate methodology than figures calculated from flow 

type data. 

5. Conclusion 

As indicated by the above analysis, R&D net asset statistics provide a better basis for 

future research of R&D than the previously calculated R&D stock figures. This is true 

not only for estimation models, which have been in use for decades, but probably, 

new, perhaps more simple models could also provide results, which make sense. This 

might well be an important step ahead in economic analysis, because research of the 

R&D activities at the country level has always had difficulties in obtaining statistically 

relevant results due to the relatively small value of R&D figures compared to GDP or 

total production of a country.  

R&D expenses are, however, inevitably long-term investments. Their effect 

on productivity is observable only after a certain time lag, therefore longer time series 

of data will always be necessary for deeper analysis. The time span of 9 years applied 

here is too short to obtain an interpretable result, therefore it would be useful to conduct 

similar research if at least twelve-year data sets are available. It may also be useful to 

try more diverse estimation methods, dynamic panel regressions among others. 

The case of R&D capitalization shows that extending the asset boundary is a 

process which is truly worthwhile. The possibility of better and faster interpretation 

of data is an important advantage for economists as data users, even if advancement 

in this field of statistics is full of difficulties. Careful consideration and innovative 

thinking on new methods of evaluation and possibilities of asset capitalization 

therefore should be welcome and continued. 
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Appendix 1. 

Dickey-Fuller tests were run for all the variables applied in this study. The variables 

were treated for difference stationarity by differencing the times the letter "d" is 

written before the name of the variable. The tests here show the performance of the 

variables after the treatment. In the case of GrNA_3 differencing treatment was not 

necessary, therefore its test is shown without such treatment. 

 

1. dddGrGDPc 

Dickey–Fuller test for d_d_d_GrGDPc 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –0.193648 

   test statistic = –0.419554 [0.8616] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –3.27577 

   test statistic = –4.83507 [0.1114] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.22606 

   test statistic = –2.07901 [0.4355] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.20225 

   test statistic = –2.14467 [0.4169] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63588 

   test statistic = –2.10067 [0.4344] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –1.95584 

   test statistic = –2.35224 [0.3662] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.12362 

   test statistic = –1.71123 [0.6460] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63361 

   test statistic = –4.84013 [0.1113] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –1.64289 

   test statistic = –3.9532 [0.1799] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –0.68602 

   test statistic = –1.02014 [0.7988] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.82295 
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   test statistic = –9.23072 [0.0178] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.17463 

   test statistic = –5.98687 [0.0645] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.64351 

   test statistic = –144.701 [0.0001] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): –1.93287 

   test statistic = –3.317 [0.2527] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63224 

   test statistic = –22.6691 [0.0007] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –14.0907 

Choi meta–tests: 

   Inverse chi–square(30) = 70.0645 [0.0000] 

   Inverse normal test = –3.3876 [0.0004] 

   Logit test: t(79) = –3.96014 [0.0001] 

 

2. ddGrNA_1 

Dickey–Fuller test for d_d_GrNA_1 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): 0.610005 

   test statistic = 0.911672 [0.9571] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.91053 

   test statistic = –1.86846 [0.4852] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.19174 

   test statistic = –1.33388 [0.7418] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.74239 

   test statistic = –6.40493 [0.0568] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –2.07273 

   test statistic = –6.85839 [0.0461] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –2.45508 

   test statistic = –38.2313 [0.0001] 

Unit 7, T = 4, lag order = 0 
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   estimated value of (a – 1): –1.69746 

   test statistic = –4.51511 [0.1288] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –1.35296 

   test statistic = –2.34524 [0.3667] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –3.40445 

   test statistic = –11.2602 [0.0094] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –1.74276 

   test statistic = –2.56499 [0.3332] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63915 

   test statistic = –2.16774 [0.3884] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.67623 

   test statistic = –3.59898 [0.2278] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.8626 

   test statistic = –2.36419 [0.3654] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): –5.25995 

   test statistic = –21.8766 [0.0009] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.6414 

   test statistic = –5.89222 [0.0699] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –7.35804 

Choi meta–tests: 

   Inverse chi–square(30) = 76.3769 [0.0000] 

   Inverse normal test = –3.84525 [0.0001] 

   Logit test: t(79) = –4.41626 [0.0000] 

 

3. dGrNA_2 

Dickey–Fuller test for d_GrNA_2 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –0.854175 

   test statistic = –2.33852 [0.3672] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.60642 

   test statistic = –0.99044 [0.8010] 
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Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.16794 

   test statistic = –1.81484 [0.6044] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63114 

   test statistic = –2.0494 [0.4503] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –2.35358 

   test statistic = –196.767 [0.0001] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –2.53276 

   test statistic = –2.15267 [0.4161] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.76964 

   test statistic = –3.99068 [0.1777] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): 1.14609 

   test statistic = 2.36076 [0.9995] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –5.28808 

   test statistic = –7.25866 [0.0384] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –2.62841 

   test statistic = –8.6278 [0.0222] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.58793 

   test statistic = –2.14455 [0.4169] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.73344 

   test statistic = –3.0914 [0.2680] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.19143 

   test statistic = –2.69728 [0.3107] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): 1.02177 

   test statistic = 0.260567 [0.9314] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.62597 

   test statistic = –1.94437 [0.4730] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –15.5498 

Choi meta–tests: 

   Inverse chi–square(30) = 51.1795 [0.0093] 
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   Inverse normal test = –1.19496 [0.1161] 

   Logit test: t(79) = –1.31793 [0.0957] 

 

4. ddLNA_2         

Dickey–Fuller test for d_d_LNA_2 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –0.864664 

   test statistic = –2.29519 [0.3757] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.609 

   test statistic = –0.997231 [0.8005] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.16964 

   test statistic = –1.81256 [0.6044] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.63304 

   test statistic = –2.06152 [0.4491] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –2.37382 

   test statistic = –124.108 [0.0001] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –2.54716 

   test statistic = –2.16458 [0.4150] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.76983 

   test statistic = –4.00616 [0.1767] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): 1.2207 

   test statistic = 1.3866 [0.9724] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –4.94891 

   test statistic = –8.4206 [0.0253] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –2.625 

   test statistic = –8.27543 [0.0266] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.5957 

   test statistic = –2.14848 [0.4165] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.73336 

   test statistic = –3.0663 [0.2705] 

Unit 13, T = 4, lag order = 0 
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   estimated value of (a – 1): –1.19002 

   test statistic = –2.65139 [0.3206] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): 1.54343 

   test statistic = 0.312558 [0.9370] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.6039 

   test statistic = –1.82626 [0.5461] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –10.8089 

Choi meta–tests: 

   Inverse chi–square(30) = 51.3039 [0.0090] 

   Inverse normal test = –1.50048 [0.0667] 

   Logit test: t(79) = –1.85661 [0.0335] 

 

5. ddddLcap (log of population size) 

Dickey–Fuller test for d_d_d_d_Lcap 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –1.84707 

   test statistic = –5.45565 [0.0790] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.743 

   test statistic = –3.50544 [0.2347] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.85375 

   test statistic = –2.52342 [0.3420] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –2.47153 

   test statistic = –1.00244 [0.8001] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –1.72874 

   test statistic = –2.36393 [0.3654] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –1.48079 

   test statistic = –1.64201 [0.6577] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.67809 

   test statistic = –2.29472 [0.3757] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –1.8169 

   test statistic = –21.6438 [0.0009] 
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Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –6.31262 

   test statistic = –6.74043 [0.0481] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –1.12536 

   test statistic = –5.03574 [0.1051] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –2.05561 

   test statistic = –7.43322 [0.0361] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.80472 

   test statistic = –8.10121 [0.0282] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.32686 

   test statistic = –2.10591 [0.4341] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): –2.40826 

   test statistic = –10.3771 [0.0117] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.5989 

   test statistic = –1.95562 [0.4720] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –5.47871 

Choi meta–tests: 

   Inverse chi–square(30) = 65.8251 [0.0002] 

   Inverse normal test = –3.6669 [0.0001] 

   Logit test: t(79) = –3.90606 [0.0001] 

 

6. dddLGDPcap_1 

Dickey–Fuller test for d_d_d_LGDPcap_1 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –0.681572 

   test statistic = –3.03415 [0.2736] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –0.545819 

   test statistic = –0.315977 [0.8712] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.39503 

   test statistic = –2.68737 [0.3169] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.26804 
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   test statistic = –2.99758 [0.2828] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –2.37594 

   test statistic = –15.918 [0.0037] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –1.42619 

   test statistic = –2.59919 [0.3303] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.20477 

   test statistic = –2.48281 [0.3460] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –1.69872 

   test statistic = –10.5959 [0.0110] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –1.58862 

   test statistic = –15.2247 [0.0043] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –0.943855 

   test statistic = –2.3935 [0.3583] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.81523 

   test statistic = –3.7205 [0.2166] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.4564 

   test statistic = –4.21902 [0.1512] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.58139 

   test statistic = –13.1951 [0.0062] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): –2.2206 

   test statistic = –3.89796 [0.1878] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.70416 

   test statistic = –10.343 [0.0118] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –6.24165 

Choi meta–tests: 

   Inverse chi–square(30) = 74.4321 [0.0000] 

   Inverse normal test = –4.3328 [0.0000] 

   Logit test: t(79) = –4.64441 [0.0000] 

 

7. dGrperpNA_1 

Dickey–Fuller test for d_GrperpNA_1 
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   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 5, lag order = 0 

   estimated value of (a – 1): –0.770249 

   test statistic = –0.645304 [0.8727] 

Unit 2, T = 5, lag order = 0 

   estimated value of (a – 1): –1.27991 

   test statistic = –2.01106 [0.4698] 

Unit 3, T = 5, lag order = 0 

   estimated value of (a – 1): –1.57327 

   test statistic = –2.94216 [0.2581] 

Unit 4, T = 5, lag order = 0 

   estimated value of (a – 1): –1.03875 

   test statistic = –1.40454 [0.7386] 

Unit 5, T = 5, lag order = 0 

   estimated value of (a – 1): –2.14108 

   test statistic = –6.39328 [0.0281] 

Unit 6, T = 5, lag order = 0 

   estimated value of (a – 1): –1.9878 

   test statistic = –78.2446 [0.0001] 

Unit 7, T = 5, lag order = 0 

   estimated value of (a – 1): –1.75353 

   test statistic = –4.43943 [0.0875] 

Unit 8, T = 5, lag order = 0 

   estimated value of (a – 1): –1.41994 

   test statistic = –2.77366 [0.2882] 

Unit 9, T = 5, lag order = 0 

   estimated value of (a – 1): –2.88608 

   test statistic = –13.6059 [0.0015] 

Unit 10, T = 5, lag order = 0 

   estimated value of (a – 1): –1.03759 

   test statistic = –1.64361 [0.6574] 

Unit 11, T = 5, lag order = 0 

   estimated value of (a – 1): –1.68805 

   test statistic = –3.47471 [0.1848] 

Unit 12, T = 5, lag order = 0 

   estimated value of (a – 1): –1.30172 

   test statistic = –4.51054 [0.0833] 

Unit 13, T = 5, lag order = 0 

   estimated value of (a – 1): –1.17955 

   test statistic = –1.92545 [0.4970] 

Unit 14, T = 5, lag order = 0 

   estimated value of (a – 1): –1.99468 

   test statistic = –2.53306 [0.3271] 
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Unit 15, T = 5, lag order = 0 

   estimated value of (a – 1): –1.62081 

   test statistic = –2.89536 [0.2641] 

H0: all groups have unit root 

N,T = (15,5) 

Im–Pesaran–Shin t–bar = –8.62951 

                   10%      5%      1% 

Critical values: –3.33   –3.88   –5.72 

Choi meta–tests: 

   Inverse chi–square(30) = 66.4775 [0.0001] 

   Inverse normal test = –3.20529 [0.0007] 

   Logit test: t(79) = –3.70406 [0.0002] 

 

8. dGrperpNA_2 

Dickey–Fuller test for d_GrperpNA_2 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –1.69436 

   test statistic = –2.22041 [0.4034] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.20983 

   test statistic = –1.2665 [0.7640] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.60902 

   test statistic = –2.12509 [0.4124] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –1.37717 

   test statistic = –1.16123 [0.7773] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –1.80417 

   test statistic = –3.33028 [0.2487] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –1.97413 

   test statistic = –56.6912 [0.0001] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.75339 

   test statistic = –3.13981 [0.2660] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –1.41575 

   test statistic = –1.94318 [0.4731] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –3.67591 

   test statistic = –15.0924 [0.0044] 
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Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –6.25805 

   test statistic = –3.72384 [0.2165] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –1.71039 

   test statistic = –2.6094 [0.3295] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.04355 

   test statistic = –9.24633 [0.0177] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –0.960279 

   test statistic = –1.17605 [0.7752] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): 1.09166 

   test statistic = 0.695655 [0.9515] 

Unit 15, T = 4, lag order = 0 

   estimated value of (a – 1): –1.66903 

   test statistic = –3.8058 [0.2112] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –7.12239 

Choi meta–tests: 

   Inverse chi–square(30) = 57.8844 [0.0016] 

   Inverse normal test = –2.17048 [0.0150] 

   Logit test: t(79) = –2.63711 [0.0050] 

 

9. dLperpNA_2 

Dickey–Fuller test for d_LperpNA_2 

   with constant and trend  

   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 5, lag order = 0 

   estimated value of (a – 1): –1.16709 

   test statistic = –1.66631 [0.6488] 

Unit 2, T = 5, lag order = 0 

   estimated value of (a – 1): –1.30804 

   test statistic = –1.96712 [0.4821] 

Unit 3, T = 5, lag order = 0 

   estimated value of (a – 1): –1.47471 

   test statistic = –2.45089 [0.3425] 

Unit 4, T = 5, lag order = 0 

   estimated value of (a – 1): –0.845728 

   test statistic = –1.74981 [0.6227] 

Unit 5, T = 5, lag order = 0 

   estimated value of (a – 1): –1.65873 



Technological Change in the System of National Accounts… 159 
 

   test statistic = –6.26341 [0.0303] 

Unit 6, T = 5, lag order = 0 

   estimated value of (a – 1): –2.11021 

   test statistic = –5.61894 [0.0446] 

Unit 7, T = 5, lag order = 0 

   estimated value of (a – 1): –1.39012 

   test statistic = –2.14945 [0.4335] 

Unit 8, T = 5, lag order = 0 

   estimated value of (a – 1): –1.3989 

   test statistic = –2.62117 [0.3080] 

Unit 9, T = 5, lag order = 0 

   estimated value of (a – 1): –3.15652 

   test statistic = –214.542 [0.0001] 

Unit 10, T = 5, lag order = 0 

   estimated value of (a – 1): –0.869741 

   test statistic = –2.1646 [0.4150] 

Unit 11, T = 5, lag order = 0 

   estimated value of (a – 1): –1.0898 

   test statistic = –1.64981 [0.6566] 

Unit 12, T = 5, lag order = 0 

   estimated value of (a – 1): –1.33528 

   test statistic = –6.09251 [0.0332] 

Unit 13, T = 5, lag order = 0 

   estimated value of (a – 1): –1.04581 

   test statistic = –2.91129 [0.2624] 

Unit 14, T = 5, lag order = 0 

   estimated value of (a – 1): –2.0396 

   test statistic = –1.22642 [0.7827] 

Unit 15, T = 5, lag order = 0 

   estimated value of (a – 1): –1.61959 

   test statistic = –3.03978 [0.2461] 

H0: all groups have unit root 

N,T = (15,5) 

Im–Pesaran–Shin t–bar = –17.0743 

                   10%      5%      1% 

Critical values: –3.33   –3.88   –5.72 

Choi meta–tests: 

   Inverse chi–square(30) = 56.4579 [0.0024] 

   Inverse normal test = –2.55848 [0.0053] 

   Logit test: t(79) = –2.9365 [0.0022] 

 

10.  GrNA_3 

Dickey–Fuller test for GrNA_3 

   with constant and trend  
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   model: (1–L)y = b0 + b1*t + (a–1)*y(–1) + e 

Unit 1, T = 4, lag order = 0 

   estimated value of (a – 1): –1.65695 

   test statistic = –2.25683 [0.4025] 

Unit 2, T = 4, lag order = 0 

   estimated value of (a – 1): –1.58412 

   test statistic = –1.81368 [0.6044] 

Unit 3, T = 4, lag order = 0 

   estimated value of (a – 1): –1.45747 

   test statistic = –2.41304 [0.3567] 

Unit 4, T = 4, lag order = 0 

   estimated value of (a – 1): –0.76999 

   test statistic = –0.901293 [0.8132] 

Unit 5, T = 4, lag order = 0 

   estimated value of (a – 1): –2.31685 

   test statistic = –2.76487 [0.3052] 

Unit 6, T = 4, lag order = 0 

   estimated value of (a – 1): –1.32404 

   test statistic = –1.39272 [0.7400] 

Unit 7, T = 4, lag order = 0 

   estimated value of (a – 1): –1.7729 

   test statistic = –2.91476 [0.2991] 

Unit 8, T = 4, lag order = 0 

   estimated value of (a – 1): –0.3029 

   test statistic = –2.78595 [0.3048] 

Unit 9, T = 4, lag order = 0 

   estimated value of (a – 1): –3.37744 

   test statistic = –28.7468 [0.0003] 

Unit 10, T = 4, lag order = 0 

   estimated value of (a – 1): –0.16541 

   test statistic = –0.149364 [0.8965] 

Unit 11, T = 4, lag order = 0 

   estimated value of (a – 1): –2.5667 

   test statistic = –2.03964 [0.4533] 

Unit 12, T = 4, lag order = 0 

   estimated value of (a – 1): –1.7916 

   test statistic = –3.0609 [0.2708] 

Unit 13, T = 4, lag order = 0 

   estimated value of (a – 1): –1.67302 

   test statistic = –2.21566 [0.3948] 

Unit 14, T = 4, lag order = 0 

   estimated value of (a – 1): –1.195 

   test statistic = –41.0331 [0.0001] 

Unit 15, T = 4, lag order = 0 
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   estimated value of (a – 1): –1.6793 

   test statistic = –2.28829 [0.3761] 

H0: all groups have unit root 

N,T = (15,4) 

Im–Pesaran–Shin t–bar = –6.45179 

Choi meta–tests: 

   Inverse chi–square(30) = 55.9678 [0.0028] 

   Inverse normal test = –1.9536 [0.0254] 

   Logit test: t(79) = –2.57096 [0.0060] 

 

 


